从限制黑暗部门的暗物质颗粒的生产可能导致许多新颖的实验签名。根据理论的细节,质子 - 质子碰撞中的黑暗夸克生产可能导致颗粒的半衰期:黑暗强度的准直喷雾,其中颗粒碰撞器实验只有一些。实验签名的特征在于,具有与喷射器的可见部件相结合的重建缺失的动量。这种复杂的拓扑对检测器效率低下和错误重建敏感,从而产生人为缺失的势头。通过这项工作,我们提出了一种信号不可知的策略来拒绝普通喷射,并通过异常检测技术鉴定半衰期喷射。具有喷射子结构变量的深度神经自动化器网络作为输入,证明了对分析异常喷射的非常有用。该研究重点介绍了半意射流签名;然而,该技术可以适用于任何新的物理模型,该模型预测来自非SM粒子的喷射器的签名。
translated by 谷歌翻译
Channel charting (CC) is an unsupervised learning method allowing to locate users relative to each other without reference. From a broader perspective, it can be viewed as a way to discover a low-dimensional latent space charting the channel manifold. In this paper, this latent modeling vision is leveraged together with a recently proposed location-based beamforming (LBB) method to show that channel charting can be used for mapping channels in space or frequency. Combining CC and LBB yields a neural network resembling an autoencoder. The proposed method is empirically assessed on a channel mapping task whose objective is to predict downlink channels from uplink channels.
translated by 谷歌翻译
视频语义细分(VSS)的本质是如何利用时间信息进行预测。先前的努力主要致力于开发新技术来计算诸如光学流和注意力之类的跨框架亲和力。取而代之的是,本文通过跨框架亲和力之间的采矿关系从不同的角度做出了贡献,可以在其上实现更好的时间信息聚合。我们在两个方面探索亲和力之间的关系:单尺度的内在相关性和多尺度关系。受传统功能处理的启发,我们提出了单尺度亲和力改进(SAR)和多尺度亲和力聚合(MAA)。为了使执行MAA可行,我们提出了一种选择性令牌掩蔽(STM)策略,以在计算亲和力时为不同量表选择一致参考令牌的子集,这也提高了我们方法的效率。最后,采用了SAR和MAA加强的跨框架亲和力,以自适应地汇总时间信息。我们的实验表明,所提出的方法对最新的VSS方法表现出色。该代码可在https://github.com/guoleisun/vss-mrcfa上公开获取
translated by 谷歌翻译
我们探索使用光学处理单元(OPU)来计算素描的随机傅立叶功能,并将整体压缩聚类管道调整到此设置中。我们还提出了一些工具,以帮助调整压缩聚类的关键超参数。
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译
巨大的多输入多输出(MIMO)通信系统在数据速率和能效方面具有巨大的潜力,尽管信道估计对于大量天线变得具有挑战性。使用物理模型允许通过基于传播物理来注入先验信息来缓解问题。然而,这种模型依赖于简化假设,并且需要精确地了解系统的配置,这在实践中是不现实的。在本文中我们呈现了MPNET,该展开神经网络专为大规模的MIMO信道估计而设计。它以无人监督的方式在线培训。此外,MPNET正在计算上高效,并自动将其深度与信噪比(SNR)相互作用。我们提出的方法通过允许基于传入数据自动校正其信道估计算法来增加物理信道模型的灵活性,而无需单独的离线训练阶段。它应用于现实毫米波通道并显示表现出色,实现频道估计误差几乎与一个完美校准的系统一起获得的频道估计误差。它还允许入射检测和自动校正,使BS弹性能够自动适应其环境的变化。
translated by 谷歌翻译
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows researchers to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. Furthermore, we propose a Transformer-based GOT tracker TaMOS capable of joint processing of multiple objects through shared computation. TaMOs achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. Finally, TaMOs achieves highly competitive results on single-object GOT datasets, setting a new state-of-the-art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.
translated by 谷歌翻译
Classification algorithms using Transformer architectures can be affected by the sequence length learning problem whenever observations from different classes have a different length distribution. This problem brings models to use sequence length as a predictive feature instead of relying on important textual information. Even if most public datasets are not affected by this problem, privately corpora for fields such as medicine and insurance may carry this data bias. This poses challenges throughout the value chain given their usage in a machine learning application. In this paper, we empirically expose this problem and present approaches to minimize its impacts.
translated by 谷歌翻译
Recurrent neural networks are deep learning topologies that can be trained to classify long documents. However, in our recent work, we found a critical problem with these cells: they can use the length differences between texts of different classes as a prominent classification feature. This has the effect of producing models that are brittle and fragile to concept drift, can provide misleading performances and are trivially explainable regardless of text content. This paper illustrates the problem using synthetic and real-world data and provides a simple solution using weight decay regularization.
translated by 谷歌翻译
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data. It can save the cost of manually labeling data in real-world applications such as robot vision and autonomous driving. Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation. However, such an assumption does not always hold in practice owing to the collection difficulty and the scarcity of the data. Thus, we aim to relieve this need on a large number of real data, and explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization (OSDG) problem, where only one real-world data sample is available. To remedy the limited real data knowledge, we first construct the pseudo-target domain by stylizing the simulated data with the one-shot real data. To mitigate the sim-to-real domain gap on both the style and spatial structure level and facilitate the sim-to-real adaptation, we further propose to use class-aware cross-domain transformers with an intermediate domain randomization strategy to extract the domain-invariant knowledge, from both the simulated and pseudo-target data. We demonstrate the effectiveness of our approach for OSUDA and OSDG on different benchmarks, outperforming the state-of-the-art methods by a large margin, 10.87, 9.59, 13.05 and 15.91 mIoU on GTA, SYNTHIA$\rightarrow$Cityscapes, Foggy Cityscapes, respectively.
translated by 谷歌翻译